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There is a close relation between the regression models presented in such standard regression 
textbooks as Cohen, Cohen, West, and Aiken (2002); Darlington and Hayes (2017); Judd and 
McClelland (2017); and Pedhazur (1997), and the ANOVA models we present in this book. We 
touch upon this relation in the tutorial on regression, but that tutorial is intended primarily as a 
brief primer on multiple regression for readers who have not already encountered it previously. 
This tutorial, on the other hand, is intended primarily for readers who already have considerable 
background in regression but who are interested in developing a deeper understanding of the rela-
tionship between ANOVA and regression. Specifically, our purpose in this tutorial is threefold: 
(1) to illustrate some examples of the relation between regression and ANOVA, (2) to explain 
the place of regression models and ANOVA models in a broader methodological framework, and 
(3) to explain why we have chosen to focus primarily on ANOVA models in this book, although 
ANOVA is often regarded as a special case of regression.

THE rElaTioN BETwEEN rEGrEssioN aND aNova 
MoDEls

Statistical models are usually defined in terms of parameters, which specify the form of relation-
ship between variables. It is often the case that two models can be written in different forms with 
parameters that appear to be different from one another, and yet the two models are in fact equiv-
alent to one another. We shall take “equivalent” to mean that even though the specific parameter 
estimates of the two models may not necessarily be the same, the sum of squared errors of the 
two models will always be equal to one another.

single-Factor Between-subjects Design

For example, consider how to write a full model for the single-factor between-subjects design of 
Chapter 3. One possible model is the following cell means model:

 Yij j ij= +µ ε
F
.  (3.47, repeated)
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Linear Models
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However, Chapter 3 also presents the effects model as an alternative full model:

 Yij j ij= + +µ α ε .   (3.59, repeated)

Chapter 3 shows that even though these two models have different forms, their sum of squared 
errors EF will always equal one another. This equivalence holds even though the effects model 
has one more parameter than the cell means model, because both models have a independent 
parameters (it is not the case, however, throughout the realm of statistical models that any two 
models having the same number of parameters will necessarily be equivalent models).

Just as it is possible to write more than one ANOVA model to represent the data and yet dis-
cover that the two models are equivalent, there is also an entire collection of regression models 
that are also equivalent to these ANOVA models. To consider some examples of such equivalent 
models, we will begin with the general form of a linear model for one dependent variable, which 
Chapter 3 shows can be written as

 Y X X X X Xi p p ii i i i i
= + + + + ⋅⋅ ⋅ + +β β β β β ε0 0 1 1 2 2 3 3 .  (3.1, repeated)

Let’s consider the relationship between this general regression model and the ANOVA effects 
model:

 Yij j ij= + +µ α ε .   (3.59, repeated)

To develop the relationship between these two models, we will start with the simplest case of two 
groups. Notice that we could write the ANOVA effects model in this case as

For Group 1: Yi1 = μ + α1 + εi1,  (1)
For Group 2: Yi2 = μ + α2 + εi2.  (2)

We can mimic this same result using regression analysis with three X variables:

Yi = β0X0i + β1X1i + β2X2i + εi,  (3)

where we define the X variables in the following way:

X0i = 1 for all individuals,
X1i = 1 for individuals in Group 1 and 0 for individuals in Group 2,
X2i = 1 for individuals in Group 2 and 0 for individuals in Group 1.

Notice that with this definition of our 3 X variables, we can write our regression model from 
Equation 3 as

For Group 1: Yi = β0(1) + β1(1) + β2(0) + εi,  (4)
For Group 2: Yi = β0(1) + β1(0) + β2(1) + εi.  (5)

Simplifying Equations 4 and 5 yields
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For Group 1: Yi = β0 + β1 + εi,  (6)
For Group 2: Yi = β0 + β2 + εi.  (7)

Notice that Equation 6 is identical to Equation 1, where β0 = μ and β1 = α1. Similarly, Equation 7 
is identical to Equation 2, where β0 = μ and β2 = α2. In other words, by defining X variables in 
regression this way, we obtain a regression model whose parameters are identical to those of the 
ANOVA effects model.

This relationship between the ANOVA effects model and regression holds not only for two 
groups but also more generally for a groups. In this more general case, we continue to define 
a + 1 X variables. The general formulation is to define X variables according to the following 
rule:

X0i = 1 for all individuals,
Xji = 1 for individuals in Group j and 0 for all other individuals.

Notice that the X0 variable, which we will refer to as a “unit variable” (because it assumes a con-
stant value of 1 for all subjects), allows for a grand mean. There are then a additional X variables, 
one for each group.

If it were not for one complication, it might be possible to end this tutorial immediately. 
However, as we mentioned briefly in Chapter 3, there is a difficulty in working with either the 
ANOVA effects model or the comparable regression model. The problem is that we have a + 1 
parameters, but only a groups. To understand why this is a problem, let’s return to our simple 
example of only two groups. We will formulate the problem in terms of the regression models 
of Equations 6 and 7, but keep in mind that these two equations are formally identical to Equa-
tions 1 and 2, so, ultimately, we must deal with the problem we are about to explain regardless of 
whether we adopt an ANOVA or a regression approach to the data.

Equations 6 and 7 stipulate that scores on Y can be explained in terms of three parameters: β0, 
β1, and β2. Specifically, our model specifies that (1) the mean Y score in Group 1 can be expressed 
as β0 + β1, and (2) the mean Y score in Group 2 can be expressed as β0 + β2. We can write these 
two statements more formally as

 μ1 = β0 + β1, (8)
 μ2 = β0 + β2. (9)

The problem is that we are allowing ourselves three parameters to explain two population means. 
Even if the two means are different, we will never need as many as three parameters to repro-
duce the population means. To see why, suppose that μ1 = 40 and μ2 = 60. What are the proper 
values of β0, β1, and β2? It turns out that there are infinitely many possible values of these three 
parameters, all of which succeed perfectly in reproducing the population means. We don’t have 
space to list all of the possibilities (listing them all would require an infinite number of pages!), 
but here are some examples:

 β0 = 50, β1 = −10, and β2 = 10, 
 β0 = 0, β1 = 40, and β2 = 60, 
 β0 = 60, β1 = −20, and β2 = 0, 
 β0 =100, β1 = −60, and β2 = −40. 
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Although these four possibilities may look very different from one another, they all share an 
important property. Namely, in all four cases, the sum of β0 and β1 equals 40 and the sum of β0 
and β2 equals 60. Thus all four sets of parameter values imply the correct population means of 
our two groups. The problem is that we have more parameters than we need. With two groups, 
we need only two parameters, not three. The problem is essentially the same with more than 
two groups. In general, with a groups, our effects model has a + 1 parameters, but we need only 
a parameters. Also notice that on a practical note, we have considered the problem in terms of 
population parameters, but we must confront the exact same problem in a sample. For example, 
if we have two sample means of 40 and 60, we still do not need three parameter estimates to 
explain these two values. The same four sets of values shown earlier when used as parameter 
estimates would all perfectly reproduce the sample means of 40 and 60, so it would be impossible 
to identify unique values for 0β̂ , 1̂β , and 2β̂ . If we cannot find unique values for these parameter 
estimates, it becomes impossible to interpret the meaning behind the parameters. Without being 
able to interpret the parameter estimates, we cannot hope to understand what properties of our 
data are reflected in these parameters. Thus we must find some way to get around this problem.

To solve this problem, we need to obtain unique values for parameters (and in a sample, 
unique values for parameter estimates). The solution is to reduce the number of parameters by 1. 
The way we do this is by establishing a “side condition,” as we mentioned in Chapter 3. It turns 
out that there are a variety of possible side conditions we might impose. Which one we choose 
does not affect the overall fit of the model, but does affect the meaning of the specific parameters 
of the model. To explore how this works, we will consider three different side conditions we 
might impose on our parameters. As we will explain later, each of these three types of side condi-
tions has its own advantages and disadvantages, so there is some value in becoming familiar with 
all three. As before, we will continue to examine these side conditions from the perspective of 
regression analysis, in particular the β parameters of the regression model.

reference cell Model

The first side condition we will consider is to constrain βa, the parameter associated with the last 
group, to be zero. Intuitively, the idea is that we need to reduce the number of parameters by 1, so 
why not simply eliminate the last parameter. Stated differently, we have a + 1 X variables in our 
model, but we need only a variables, so it seems reasonable to drop the final variable. It turns out 
that this is exactly what we are doing when we constrain βa to equal zero.

To understand what is happening here, let’s reconsider the simple case of two groups. Recall 
from Equations 8 and 9 that in the case of two groups, we can express the relationship between 
cell means and regression parameters as

 μ1 = β0 + β1, (8, repeated)
 μ2 = β0 + β2. (9, repeated)

However, we will now impose our constraint that the parameter associated with the last group 
equals zero. In the case of two groups, our constraint would be that β2 = 0, because a = 2. Thus 
we can simplify Equations 8 and 9 as

 μ1 = β0 + β1, (10)
 μ2 = β0. (11)

Equations 10 and 11 show us that we now have unique values and thus unique interpretations for 
β0 and β1, the two parameters in our model. Namely, Equation 11 says that β0 is the population 
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mean of Group 2. Notice that we have to be careful here to realize that the intercept of our regres-
sion analysis does not represent the grand mean, but instead represents the mean of Group 2. This 
happens because in general the intercept is the population value of Y when all X variables equal 0, 
and in this case, X1 (our only predictor variable with two groups) is zero for individuals in Group 
2. The meaning of β1 becomes clear if we rewrite Equation 10 as

 β1 = μ1 − β0. (12)

Because we know from Equation 11 that μ2 = β0, we can further rewrite Equation 12 as

 β1 = μ1 − μ1. (13)

Equation 13 reveals one of the advantages of this particular side condition—namely, that β1, 
the parameter associated with our X1 predictor, represents the difference between the popula-
tion means of Groups 1 and 2. This is especially convenient because if we want to test a null 
hypothesis that μ1 = μ2, we can simply test a null hypothesis that β1 = 0 in our regression model. 
Similarly, if we want to form a confidence interval for μ1 − μ2, we can form a confidence interval 
for β1 using regression analysis.

Another advantage of this choice of side condition is that it is trivial to implement. By saying 
that βa equals zero, we are effectively omitting Xa as a predictor in our model. To see why, let’s 
look again at Equation 3 for two groups:

 Yi = β0X0i + β1X1i + β2X2i + εi. (3, repeated)

Imposing the side condition that β2 = 0 (recall that βa is the same as β2 when a = 2) implies that 
we can write the model as

 Yi = β0X0i + β1X1i + (0)X2i + εi, (14)

which further simplifies to

 Yi = β0 + β1X1i + εi, (15)

because X2i drops out when multiplied by zero (notice also that X0i has disappeared in Equa-
tion 15 because we have substituted 1 for X0i, knowing that X0i = 1 for all individuals). Notice 
that the only difference between Equation 15 and Equation 3 is that the X2 variable has been 
omitted from Equation 15. Thus, in a practical sense, we can impose the side condition that β2 = 0 
by omitting X2 from our model. In other words, we fit a regression model where we intention-
ally omit the variable representing Group 2. Instead of including two predictor variables in our 
regression model, when we have two groups, we include only one predictor (although keep in 
mind that we have also included the unit variable X0 in our model).

What about the more general case of a groups? Exactly the same logic holds here as well. We 
simply omit Xa as a predictor. As a consequence, β0, the intercept term in the model, becomes 
equal to the population mean of the final group—i.e,

 β0 = μa. (16)
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In addition, the β parameter associated with a given predictor variable becomes equal to the dif-
ference between the population mean of that group and Group a. In symbols,

 βj = μj − μa. (17)

Notice then that each βj parameter compares one of the first a − 1 group means to the mean of the 
last group. For this reason, the model resulting from this side condition is often referred to as a 
“reference cell” model, where Group a is the reference group against which all other groups are 
compared. In some situations, such as when one group is a control group and all other groups are 
experimental groups, the parameters have a very natural interpretation. However, in other situa-
tions, it may seem artificial to single out one group and compare it to all of the others. Even so, it 
turns out that this specific side condition offers additional advantages, which is why it forms the 
basis of the approach used by many general linear model routines, such as the parameterization 
resulting from a CLASS statement in SAS PROC GLM and SAS PROC MIXED. We will return 
to this issue later in this tutorial. We should also mention that this method of coding variables to 
represent group membership is often referred to in the literature as “dummy coding.”

One additional point regarding the reference cell model will prove to be helpful for understanding 
its extension to factorial designs. Remember that the regression intercept β0 in this model equals μa. 
Implicitly, this leads to a new definition of μ in ANOVA notation. Instead of automatically interpret-
ing μ as the grand mean averaged over all groups, μ effectively becomes μa, the mean of Group a, in 
the reference cell model. As usual, we can still define an effect for group j to be of the form

αj = μj – μ.

However, the meaning of an “effect” from this perspective is clearly different than it is in the 
ANOVA effects model. In the reference cell model, the effect of group j is the mean difference 
between it and Group a, not the mean difference between group j and the grand mean. This 
definition has two important implications. First, the effect of Group a is now necessarily equal 
to zero. Notice that this is literally the constraint we have imposed on the effect parameters in 
order to reduce the number of parameters to be estimated from a + 1 to a. Second, the sum of 
the effects typically no longer equals zero. Both of these points will become important when we 
examine the reference cell model for a factorial design.

cell Means Model

The second side condition we will consider is to constrain β0 to equal zero. In a moment, we will 
describe how to operationalize this constraint, but first, we will examine its meaning in the con-
text of two groups. Recall from Equations 8 and 9 that we can express the relationship between 
cell means and regression parameters as

 μ1 = β0 + β1, (8, repeated)
 μ2 = β0 + β2. (9, repeated)

However, if we impose a constraint that β0 = 0, we can simplify these equations as

 μ1 = β1,  (18)
 μ2 = β2.  (19)
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Notice that with this constraint in place, each of the remaining β parameters simply becomes 
equal to a population mean. In the more general case of a groups, there would be a β parameters, 
each of which would equal a population mean. For this reason, we say that imposing a side condi-
tion where β0 = 0 results in a “cell means” model.

Using the cell means model from a regression perspective requires us to constrain β0 to equal 
zero. The simplest way to do this is to realize that by saying that β0 equals zero, we are effectively 
omitting X0 as a predictor in our model. To see why, let’s look again at Equation 3:

 Yi = β0X0i + β1X1i + β2X2i + εi. (3, repeated)

Imposing the side condition that β0 = 0 implies that we can write the model as

 Yi = (0)X0i + β1X1i + β2X2i + εi, (20)

which further simplifies to

 Yi = β1X1i + β2X2i + εi. (21)

Notice that the only difference between Equation 21 and Equation 3 is that the X0 variable has 
been omitted from Equation 21. Thus, in a practical sense, we can impose the side condition 
that β0 = 0 by omitting X0 from our model. In other words, we fit a regression model where we 
intentionally omit the intercept term. Although this may seem odd, most regression routines in 
standard statistical packages provide omission of the intercept term as an option.

An advantage of the cell means model is that each parameter of the model has a clear 
interpretation. We can directly interpret any given βj as the population mean of group j. When 
applied to sample data, estimated regression coefficients, βj, are simply sample means Yj  for 
group j. Despite this ease of interpretation, the cell means model suffers from two disadvan-
tages when viewed from a regression perspective. First, although each individual parameter 
has a clear interpretation, it can be tedious to examine differences among parameters. In other 
words, our usual questions are not literally about single population means, but instead about 
differences between population means. To answer these questions in the cell means model, 
we must form differences of parameters, whereas other choices of side conditions result in 
parameters that are already expressed as mean differences. This is not an insurmountable dif-
ficulty, but essentially requires the availability of a regression program that allows tests and 
confidence intervals for linear combinations of regression coefficients. Second, as a minor 
point, we have already noted that the cell means formulation requires that we omit the inter-
cept term from our model. This also is not insurmountable, but it is unconventional, so it 
requires care in implementing.

Effects Model

The third side condition we will consider is already familiar from Chapter 3. You may recall that 
the side condition we imposed there was that the sum of effects added across all groups equal 
zero, which we can write in symbols as

 α j
j

a

=
∑ =

1

0 .  (3.60, repeated)αj
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We can rewrite this side condition in a notation for regression by remembering that each 
regression coefficient βj equals a corresponding ANOVA effect αj (as we saw in our compari-
son of Equations 1 and 6, as well as Equations 2 and 7). With this substitution, Equation 3.60 
becomes

 β j
j

a

=
∑ =

1

0 .  (22)

To understand this third type of side condition, let’s begin with the two-group case. Recall from 
Equations 8 and 9 that in the special case of two groups, we can express the relationship between 
cell means and regression parameters as

 μ1 = β0 + β1, (8, repeated)
 μ2 = β0 + β2. (9, repeated)

However, we will now impose our constraint that the sum of the βj parameters equals zero. In the 
case of two groups, our constraint would be

 β1 + β2 = 0, (23)

which we can rewrite as

 β2 = −β1. (24)

By substituting −β1 for β2, we can simplify Equations 8 and 9 as

 μ1 = β0 + β1, (25)
 μ2 = β0 − β1. (26)

We now need to consider the interpretation of our two parameters (i.e., β0 and β1) in this formula-
tion. We will begin with β0. Suppose we were to add together Equations 25 and 26. The result 
would be

 μ1 + μ2 = 2β0, (27)

which we can simply rewrite as

 β0 = (μ1 + μ2) / 2. (28)

The right side of Equation 28 is just the grand mean in the population, which we have previously 
designated as μ. Thus we can express Equation 28 as

 β0 = μ, (29)

which in words means that with this side condition, we can interpret β0 in our regression model 
as the grand mean μ from an ANOVA perspective.

βj
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Notice that the only remaining parameter in our model is β1. How can we interpret it? To 
answer this question, we can rewrite Equation 25 as

 β1 = μ1 − β0. (30)

Because we now know from Equation 29 that β0 = μ, we can substitute μ for β0 in Equation 30, 
yielding

 β1 = μ1 – μ. (31)

This reveals that we can interpret β1 as the difference between the population mean of Group 1 
and the population grand mean. In other words, β1 is literally the “effect” associated with Group 
1, where we understand that “effect” refers to a deviation from the grand mean. Rewriting Equa-
tion 26 shows us that we can also use β1 to find the “effect” associated with Group 2 because

 −β1 = μ2 − μ (32)

so that by changing the sign of β1 we obtain the “effect” of Group 2—i.e., the deviation of the 
population mean of Group 2 from the grand mean. Most importantly, Equations 29 and 31 show 
us that we now have unique values and thus unique interpretations for β0 and β1, the two param-
eters in our model. Furthermore, Equation 31 reveals one of the advantages of this particular 
side condition, namely that the β1 parameter has a straightforward interpretation as the “effect” 
associated with Group 1. In a moment, we will extend this side condition to the general case of a 
groups, but first let’s see how to implement this side condition in a regression model for 2 groups.

To see how to operationalize this third form of side condition in regression analysis with two 
groups, let’s return to Equation 3:

 Yi = β0X0i + β1X1i + β2X2i + εi. (3, repeated)

Imposing the side condition that β2 = −β1 (from Equation 24) allows us to express Equation 3 as

 Yi = β0X0i + β1X1i − β1X2i + εi, (33)

which we can then rewrite as

 Yi = β0X0i + β1(X1i − X2i) + εi. (34)

Implicit in Equation 34 is that we have redefined the predictor variable to be included in our 
model. Instead of including X1 and X2 as two separate predictor variables, Equation 34 tells us 
that we now should include a single predictor variable where the score for an individual on this 
new variable is literally the difference between that individual’s score on our original X1 and our 
original X2. To figure out what this means, we need to return to the way we defined our original X 
variables. Remember that we originally defined our X variables in the following way:

X0i = 1 for all individuals,
X1i = 1 for individuals in Group 1 and 0 for individuals in Group 2,
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X2i = 1 for individuals in Group 2 and 0 for individuals in Group 1.

According to Equation 34, we should continue to include in our model an X0 variable coded as 
1 for each individual. However, instead of separate X1 and X2 variables, we should form a single 
predictor created as X1 minus X2. Now, here is the key point from a practical perspective. Notice 
that a predictor defined in this way will have the following property:

X1i − X2i = 1 − 0 for individuals in Group 1,
X1i − X2i = 0 − 1 for individuals in Group 2.

In words, we need to code our single predictor so that it has a value of 1 for individuals in Group 
1 but a value of −1 for individuals in Group 2. Using this method of coding imposes a constraint 
on our original parameters so that the sum of the ANOVA “effects” equals zero.

We are now ready to generalize this third type of side condition to the case of a groups. The 
same logic continues to apply in the more general case, but the details become slightly more 
complicated. Recall that with a groups, we can write our constraint as

 β j
j

a

=
∑ =

1

0 .  (3.60, repeated)

In general, we know that

 μj = β0 + βj. (35)

To understand the meaning of the β0 parameter in our regression model, we can sum both sides 
of Equation 35 across groups, which results in

 µ β βj
j

a

j
j

a

a
= =

∑ ∑= +
1

0
1

.  (36)

It immediately follows from Equation 3.60 that Equation 36 simplifies to

 µ βj
j

a

a
=

∑ =
1

0 ,  (37)

which we can rewrite as

 β
µ

µ0
1= ==

∑ j
j

a

a
.  (38)

Thus the β0 parameter in our regression model is the population grand mean. To interpret the 
remaining parameters in the regression model, we can simply substitute μ for β0 in Equation 35, 
and move βj to the left side of the equation, yielding

 βj = μj – μ, (39)

which shows that the remaining βj parameters are ANOVA “effect” parameters.
To understand how we need to code our predictor variables in the general case of a groups, 

recall that the general form of a linear model is given by

βj

μj β0 βj

μj β0

β0

μj

μ
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 Yi = β0X0i + β1X1i + β2X2i + β3X3i + … + βpXpi + εi.  (3.1, repeated)

When we have a groups, we will have a predictors plus X0, so we can rewrite Equation 3.1 as

 Yi = β0X0i + β1X1i + β2X2i + β3X3i + … + βaXai + εi . (40)

However, we know from Equation 3.60 that

β βa j
j

a

= −
=

−

∑
1

1

, 

which means that we can express Equation 40 as

 Y X X X X Xi j
j

a

ai i i i i i= + + + + ⋅⋅ ⋅ −






+

=

−

∑β β β β β ε0 0 1 1 2 2 3 3
1

1

.  (41)

We can now rewrite Equation 41 as

 Y X X X X X X X Xi i i ai i ai i ai a a= + − + − + − + + − −β β β β β0 0 1 1 2 2 3 3 1 1( ) ( ) ( ) (� ii ai iX− +) .ε   (42)

Equation 42 reveals two important points: (1) our regression model now contains a − 1 predictors 
along with an intercept term, and (2) each predictor is an original predictor minus Xa.

To understand the practical implications of this second point, let’s consider the coding of  
X1i − Xai for individuals in each group. This predictor will have the following property:

X1i − Xai = 1 − 0 for individuals in Group 1,
X1i − X2i = 0 − 0 for individuals in Group 2 through a – 1,
X1i − Xai = 0 − 1 for individuals in Group a.

In words, we need to code our new predictor so that it has a value of 1 for individuals in Group 
1, a value of 0 for individuals in all other groups except the last group, and a value of −1 for indi-
viduals in the last group. More generally, we could say that we need to code predictor variable Xj 
so that individuals in Group j receive a value of 1, individuals in Group a receive a value of −1, 
and individuals in all other groups receive a score of 0. This method of coding ensures us that the 
resulting regression parameters will reflect ANOVA “effect” parameters.

Numerical Example
At this point it may be helpful to provide a numerical example to illustrate the theoretical devel-
opments we have presented. Table T3.1 reproduces the data originally shown in the tutorial on 
regression. The sample size in this example is smaller than should be used in an actual study, but it 
allows ease of calculation and interpretation. Table T3.2 illustrates the three different coding meth-
ods we have presented. For example, consider the reference cell model. It contains a unit variable, 
where each individual receives a score of 1. The remaining a − 1 predictor variables are all scored 
either zero or one. In particular, a “1” appears on variable Xj if and only if an individual belongs to 
Group j. Finally, notice that we have included only a − 1 predictor variables (not counting the unit 
variable), because we have omitted the predictor for the final group. Next, consider the cell means 
model. Notice that it does not contain a unit variable. Otherwise, the coding is identical to that for 
the reference cell model except that here we also include a predictor for the final group. The final 

...
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third of the table illustrates coding for the effects model. Notice that like the reference cell model, 
here we include a unit variable. In fact, the only difference from the reference cell model is that in 
the effects model, the individuals in the final group receive a value of −1 on every predictor variable 
(except of course they receive a score of 1 on the unit variable, by definition).

TaBlE T3.l  
DaTa To illusTraTE rEGrEssioN 

aPProacH To aNova

Group

1 2 3 4

11 13 15 17
13 15 17 19

TaBlE T3.2  
THrEE coDiNG scHEMEs For TaBlE T3.l DaTa

Reference Cell Model

Group Y  X 0 X1 X 2  X 3

1 11 1 1 0 0
1 13 1 1 0 0
2 13 1 0 1 0
2 15 1 0 1 0
3 15 1 0 0 1
3 17 1 0 0 1
4 17 1 0 0 0
4 19 1 0 0 0

Cell Means Model

Group Y  X1 X 2 X 3  X 4

1 11 1 0 0 0
1 13 1 0 0 0
2 13 0 1 0 0
2 15 0 1 0 0
3 15 0 0 1 0
3 17 0 0 1 0
4 17 0 0 0 1
4 19 0 0 0 1

Effects Model

Group Y  X 0 X1 X 2 X 3  
1 11 1  1  0  0
1 13 1  1  0  0
2 13 1  0  1  0
2 15 1  0  1  0
3 15 1  0  0  1
3 17 1  0  0  1
4 17 1 −1 −1 −1
4 19 1 −1 −1 −1
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Table T3.3 summarizes parameter estimates and sums of squared errors for the various 
ANOVA and regression models. We encourage readers to duplicate these results, especially for 
those with access to ANOVA and regression procedures in statistical packages.

Several points illustrated in Table T3.3 deserve special mention. First, notice that all six 
of these models are equivalent to one another in the sense that the sum of squared errors for 
each of these full models equals 8. Second, the reason for this equivalence is revealed in the 
column entitled “Predicted Cell Means.” Each and every one of these models ultimately results 
in the same predicted score for any individual. In other words, regardless of how the model 
is formulated, the predicted score for someone in Group 1 will be 12, the predicted score for 
someone in Group 2 is 14, and so forth. Because the models all make the same predictions, 
they are equivalent to one another. Third, notice that the specific parameter estimates are not 
necessarily equal to one another. Although for any given ANOVA model there is always a 
regression model that has the same parameter estimates, the estimates of the effects model, 
cell means model, and reference cell model are different from one another. These differences 
reflect the fact that the meaning of specific parameters depends on the specific way in which 
we have chosen to formulate the model. However, there are certain patterns in the parameter 
estimates that manifest themselves across all these models. For example, consider the differ-
ence between the parameter estimate associated with Group 1 and the corresponding estimate 
associated with Group 2. In all six cases, the difference between these two parameter estimates 
is −2. Such a difference is called an “estimable function” and is meaningful because its value 
and interpretation remain the same regardless of how we chose to parameterize the model. We 
will say more about estimable functions later, but for now we will simply say that any contrast 
of the means (or, correspondingly, of the effects) whose coefficients sum to zero will necessar-
ily be an estimable function. Thus when we are interested in estimating and testing differences 
among group means, such as by formulating contrasts, we will eventually reach the same 
conclusion regardless of how we originally parameterized the model. Fourth, it is extremely 
important to realize that the numerical values of the coded predictor variables do not in general 
directly represent contrast coefficients. For example, consider X1 for effects coding as shown in 
Table T3.2. The values of this variable are 1 for Group 1, 0 for Group 2, 0 for Group 3, and −1 
for Group 4. A naive interpretation would be that this variable reflects the difference between 
the means of Groups 1 and 4 (i.e., that β1 equals μ1 − μ4). However, we have already seen that 
the actual meaning of this variable is that it indicates the “effect” of Group 1 so that in reality 
it reflects the difference between the mean of Group 1 and the grand mean. In other words, this 
variable corresponds to a contrast that compares Group 1 to the average of all (other) groups, 
which we could represent as a contrast with coefficients of 1, −1/3, −1/3, and−1/3 for Groups 
1, 2, 3, and 4, respectively. Notice that there is no direct relationship between the X values of 
1, 0, 0, −1, and the coefficients of the contrast represented by this variable. This lack of a direct 
relationship opens the door for possible confusion and misinterpretation, so we now feel the 
need to consider the topic of contrasts in some additional detail.

Contrasts in Single-Factor Between-Subjects Designs
So far we have verified that regression can duplicate ANOVA for the omnibus null hypothesis in 
a single-factor between-subjects design. This next section investigates the connection between 
ANOVA and regression for contrasts. Specifically, we will see that although the connection is 
sometimes more difficult to operationalize, once again it is possible to form regression models 
that are equivalent to ANOVA models for testing contrasts. Our emphasis here is on hypothesis 
testing, but the results also apply to confidence intervals.

Two fundamentally different but ultimately equivalent approaches exist to test contrasts 
with regression models. The first of these approaches involves coding predictors so as to 
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obtain tests of specific contrasts directly as tests of specific regression coefficients. The sec-
ond approach relies not on coding, but instead expresses any contrast of interest as a spe-
cific linear combination of the regression coefficients. We will briefly illustrate each of these 
approaches, and will touch upon some of the complexities that can arise, especially in the first 
approach.

We will begin by considering how appropriate coding of predictor variables can be used in 
regression to test contrasts of interest. You may be surprised to learn that various regression 
books suggest different strategies for testing contrasts. In part, this variety reflects the impres-
sive flexibility of the regression model, but it may also reflect a trade-off between simplicity and 
generality. Authors are faced with a choice of either presenting simple approaches that are often 
but not always appropriate, or else presenting more complicated approaches that are always 
appropriate.

We have chosen to present one approach for pairwise comparisons and a second approach for 
complex comparisons. In principle, the approach we describe for complex comparisons could 
also be used for pairwise comparisons, so it fulfills the criterion of generality but does so at 
the expense of increased complexity. As such, we should stress that the choice between these 
two approaches and yet other possibilities described in other sources is ultimately a subjective 
decision.

We will continue to use the data from Table T3.1 to illustrate contrasts. Recall that we have 
equal n in this example. Certain methods of testing contrasts work fine with equal n, but produce 
erroneous results with unequal n. In order to demonstrate that the approaches we present here 
produce accurate results with unequal n, we have chosen to modify the data shown in Table T3.1 
In particular, we will suppose now that there are a total of four observations in the first group. For 
simplicity, we will assume that these four individuals have scores of 11, 11, 13, and 13. Notice 
that the sample mean for the first group is still 12, as it was for the original data. For future refer-
ence, we will refer to this unequal n version of our data as our “augmented” data set to distinguish 
it from our original equal n example.

TaBlE T3.3  
ParaMETEr EsTiMaTEs aND suM oF sQuarED Errors For various aNova aND 

rEGrEssioN MoDEls

EF Parameter Estimates Predicted Cell Means

ANOVA Models

Effects 8
1 2 3ˆ ˆ ˆˆ 15, 3, 1, 1µ α α α= = − = − = 1 2 3 4

ˆ ˆ ˆ ˆ12, 14, 16, 18= = = =Y Y Y Y

Cell Means 8
1 2 3 4ˆ ˆ ˆ ˆ12, 14, 16, 18µ µ µ µ= = = = 1 2 3 4

ˆ ˆ ˆ ˆ12, 14, 16, 18= = = =Y Y Y Y

Reference Cell 8
1 2 3ˆ ˆ ˆˆ 18, 6, 4, 2µ α α α= = − = − = − 1 2 3 4

ˆ ˆ ˆ ˆ12, 14, 16, 18= = = =Y Y Y Y

Regression Models

Effects 8
0 1 2 3

ˆ ˆ ˆ ˆ15, 3, 1, 1β β β β= = − = − = 1 2 3 4
ˆ ˆ ˆ ˆ12, 14, 16, 18= = = =Y Y Y Y

Cell Means 8
1 2 3 4

ˆ ˆ ˆ ˆ12, 14, 16, 18β β β β= = = = 1 2 3 4
ˆ ˆ ˆ ˆ12, 14, 16, 18= = = =Y Y Y Y

Reference Cell 8
0 1 2 3

ˆ ˆ ˆ ˆ18, 6, 4, 2β β β β= = − = − = − 1 2 3 4
ˆ ˆ ˆ ˆ12, 14, 16, 18= = = =Y Y Y Y
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Pairwise contrasts via coding

Suppose a researcher wants to use the augmented data set to test whether Groups 1 and 2 have 
equal population means. From an ANOVA perspective, Equation 4.11 shows that the sum of 
squares for this contrast equals 5.33. The value of MSw is 1.67, so from Equation 4.16 the F sta-
tistic for this contrast equals 3.20.

How can we obtain the correct F statistic for this contrast using regression? There is more than 
one way to accomplish this goal, but the method we will present relies on reference cell coding. 
Specifically, we can compare Groups 1 and 2 simply by making either group the reference cell in 
our coding scheme. The top portion of Table T3.4 shows a coding scheme where we have chosen 
Group 1 as our reference group. The middle portion of Table T3.4 shows an excerpt from the 
output using PROC REG to analyze our data with the aforementioned coding scheme. Notice that 
the estimated coefficient for X1 is 2.0, which is simply the difference between the sample means 
for Groups 1 and 2. The t value for this coefficient is 1.79, which is the square root of our earlier 
F value of 3.20. As further corroboration, the bottom of Table T3.4 shows output from PROC 
GLM, where we have used an ESTIMATE command to estimate μ2 − μ1. The estimated value 
is 2.0, which is simply the difference in sample means, and the corresponding t value is 1.79, 
once again confirming that the regression analysis produced the desired result. Thus, even with 
unequal n, we can use the reference cell coding method to compare Groups 1 and 2.

What if we also wanted to compare additional pairs of groups? The output from our regression 
analysis shows that we already have information about the comparisons of Groups 1 and 3 as well 

TaBlE T3.4  
PairwisE coNTrasTs via coDiNG

          Reference Cell Coding for Augmented Data

Group Y X0 X1 X2 X3

1 11 1 0 0 0
1 11 1 0 0 0
1 13 1 0 0 0
1 13 1 0 0 0
2 13 1 1 0 0
2 15 1 1 0 0
3 15 1 0 1 0
3 17 1 0 1 0
4 17 1 0 0 1
4 19 1 0 0 1

Output from SAS PROC REG Parameter Estimates

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr > |t|
Intercept 1 12.00000 0.64550 18.59 <.0001

Xl 1  2.00000 1.11803  1.79  .1238
X2 1  4.00000 1.11803  3.58  .0117
X3 1  6.00000 1.11803  5.37  .0017

Output from SAS PROC GLM for Comparing First Two Groups

Parameter Estimate Standard Error t Value Pr >|t|
mul vs mu2 2.00000000 1.11803399 1.79 0.1238
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as Groups 1 and 4. However, just as obvious is that we have learned nothing of direct interest about 
any of the pairwise differences that do not involve Group 1. Unfortunately, we cannot simply do one 
regression analysis with all a(a − l)/2 predictor variables (except in the uninteresting case where a = 
2) because that would give us more than a − 1 predictors in one equation. Instead, what we must do 
is cycle through a − 1 choices of which group is used as the reference group. If α is very large, this is 
clearly a tedious process, which is one reason in practice that there are obvious advantages to using 
software that does not require us to code our own predictor variables for a regression analysis.

complex contrasts via coding

Suppose a researcher wants to consider a complex comparison. For example, suppose he or she 
wants to use the augmented data set to test the difference between the mean of Group 4 and the 
average of the other three groups. Once again, there is more than one way to do this in regression, 
but we will present a general approach that works with either equal or unequal n.

We will describe this approach in terms of four steps:

1. Write the contrast to be tested in terms of its coefficients, as in Chapter 4. For example, in 
our case, the coefficients would be −1/3, −1/3, and −1/3, and 1 for Groups 1, 2, 3, and 4, 
respectively.

2. Create a − 2 additional contrasts orthogonal to the contrast of interest. Whenever a > 3, there 
are multiple sets of orthogonal contrasts. A simple pair in our case would be one contrast with 
coefficients of −1, 1, 0, and 0 and another contrast with coefficients of −1, −1, 2, and 0. Even 
if only one contrast is of ultimate interest, it is necessary to include a − 1 predictors in the 
regression analysis, especially with unequal n.

3. Each contrast becomes a predictor variable in the regression analysis. For example, scores 
on X1 are based on the coefficients of the first contrast, scores on X2 are based on the coeffi-
cients of the second contrast, and so forth. In particular, consider scores on X1. Each member 
of Group 1 is assigned a score on X1 equal to the coefficient for Group 1 in the first contrast. 
In our example, this score would be −1/3. Similarly, each member of Group 2 is assigned a 
score on X1 equal to the coefficient for Group 2 in the first contrast. In our example, this score 
is once again −1/3. This process proceeds until scores have been assigned for each individual 
on each predictor variable.

4. One more step is necessary if we want our regression coefficients to be interpretable as dif-
ferences in means. To do so, we need to consider two values: (1) the value of our negative 
coefficient and (2) the value of the positive coefficient (our approach presumes that every 
group receiving a negative coefficient has the same value for that coefficient, and the same 
is true for the positive coefficients, although the absolute value of the negative and positive 
coefficients can be different). We need to scale each predictor variable so that the difference 
between the negative score and the positive score equals 1. For example, so far, our values 
for X1 are −1/3, −1/3, −1/3, and 1. The difference between the negative value of −1/3 and the 
positive value of 1 is 4/3. Thus we need to divide each value by 4/3 (i.e., multiply by 3/4). 
Doing so yields our final codes for X1: −1/4, −1/4, −1/4, and 3/4 for individuals in Groups 
1, 2, 3, and 4, respectively. We need to make three additional points. First, the reason we 
need to rescale in this way in order to interpret each coefficient as a mean difference is that 
a regression coefficient depicts the change in Y divided by the change in X. If we code X so 
that its change is 1, then the coefficient will simply reflect the change in Y. Here the change 
in X is simply the difference between the negative value and the positive value, so we need 
to scale our predictors so that this difference is 1. Second, this algorithm for rescaling works 
only if there are at most three distinct values of coefficients: a single negative value applied 
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to one or more groups, a single positive value applied to one or more groups, and a value 
of 0 applied to one or more groups. A counterexample would be coefficients of 1/3, 2/3, −1, 
and 0. Rescaling weighted averages such as this requires more complex methods beyond the 
scope of this tutorial. Third, keep in mind that rescaling is unnecessary if you only want to 
test hypotheses. Rescaling becomes relevant only when you want to estimate values of mean 
differences, often in conjunction with confidence intervals.

The top portion of Table T3.5 shows the end result of applying these four steps to our augmented 
data. The middle of the table shows an excerpt of the output from the corresponding regression 
analysis. Notice that the estimated value for the contrast of interest is 4.0, as reflected by the 
estimated value for the coefficient associated with X1. We can tell this is exactly what it should 
be by realizing that the mean of Group 4 is 18, while the average of the means of the other three 
groups is 14 (namely, the unweighted average of 12, 14, and 16; a different approach is needed 
in the less typical case where we want a weighted average). The t value for the contrast equals 
3.88, which implies a p value of .0082. Notice that the regression results for X3 here agree exactly 
with what we saw earlier for the comparison of Groups 1 and 2. Finally, the bottom portion of the 
table shows an excerpt of results obtained from PROC GLM. As before, this output confirms the 
results we obtained using regression analysis.

a Good idea Gone Bad

Let’s return to our example where the only question of interest is a comparison of Groups 1 and 
2. A simple method of coding suggests itself for a regression approach to this question. It seems 
natural to create a predictor variable coded as follows:

X i1

1 1
1= −

if the individual belongs to Group 
if the individuaal belongs to Group 
otherwise

2
0









. 

Because we are interested only in the contrast of Groups 1 and 2, we could form a regression 
model that uses only X1 as a predictor. Will this yield the same conclusion about the difference 
between the means of Groups 1 and 2 as the more complicated model that includes all three 
coded predictors?

As long as we have equal n, things are fairly straightforward. It turns out that this single 
predictor variable accounts for a sum of squares equal to 4 in the equal n version of our data 
(i.e., the original data shown in Table B.l), just as in the ANOVA approach. Furthermore, the 
estimated coefficient for X1 is −1, just as we would hope when the sample mean of the first 
group is 12, the sample mean of the second group is 14, and the two groups have been coded 
as 1 and −1, respectively. However, one immediate complication arises here because we must 
consider the nature of our full model. The ANOVA full model for these data has four param-
eters and allows each group to have its own mean. However, if we consider the regression 
model with only X1 to be the full regression model, we will not obtain the same result we did 
in ANOVA. Specifically, for these data, the ANOVA full model has a sum of squared errors of 
8 and degrees of freedom of 4. The regression model with only X1 as a predictor, on the other 
hand, has a sum of squared errors of 44 and degrees of freedom of 7. As a consequence, the F 
statistic for regression here equals 0.64, considerably smaller than the ANOVA value of 2.00. 
However, regression can duplicate the ANOVA value of 2.00 by reformulating the full model 
as one that contains all four parameters. One way of accomplishing this goal is to form two 
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separate regression models, one of which uses only X1 as a predictor and the other of which 
uses a − 1 predictors, such as in the effects or reference cell full models. Alternatively, a single 
analysis with a − 1 predictors can be undertaken as long as the additional a − 2 predictors form 
an orthogonal set with the X1 predictor of interest. The choice between these two approaches 
is a matter of convenience and personal preference because both will yield the desired F value 
of 2.00 for these data.

Both regression alternatives are somewhat cumbersome, but still relatively straightforward. 
Unfortunately, however, things become more complicated when sample sizes are unequal. For 
example, let’s now see what happens in our augmented data set with unequal n. Recall that we 
have seen earlier from Equation 4.18 that the F statistic for this contrast equals 3.20. Now sup-
pose that we use the same natural coding we used previously to compare Groups 1 and 2. In the 
augmented data, the sum of squares accounted for by X1 equals 13.83, more than twice as large 
as the value obtained from ANOVA (the interested reader is encouraged to verify the value of 
13.83, either by hand or more likely by the regression procedure in a statistical package). The 
corresponding F value in the regression analysis is 8.30, based on the correct MSW value of 
1.67. In addition, the estimated coefficient for X1 is no longer −1.00, but instead has become 
−1.57, even though all four sample means are the same in the augmented data as they were in 
the original data.

TaBlE T3.5  
coMPlEX coNTrasTs via coDiNG

Complex Contrast Coding for Augmented Data

Group Y X0 X1 X2 X3 

1 11 1 −1/4 −1/3 −1/2
1 11 1 −1/4 −1/3 −1/2
1 13 1 −1/4 −1/3 −1/2
1 13 1 −1/4 −1/3 −1/2
2 13 1 −1/4 −1/3 1/2
2 15 1 −1/4 −1/3 1/2
3 15 1 −1/4 2/3 0
3 17 1 −1/4 2/3 0
4 17 1 3/4 0 0
4 19 1 3/4 0 0

Output from SAS PROC REG Parameter Estimates

Parameter Estimates

Variable DF
Parameter 
Estimate

Standard 
Error t Value Pr> |t| Type ISS Type II SS

Intercept 1 15.00000 0.42696 35.13 <.0001 2,073.60000 2,057.14286
Xl 1  4.00000 1.03190  3.88  .0082 32.40000 25.04348
X2 1  3.00000 1.07044  2.80  .0311 16.66667 13.09091
X3 1  2.00000 1.11803  1.79  .1238 5.33333 5.33333

Output from SAS PROC GLM

Parameter Estimate Standard Error t Value Pr>|t|
Four vs. other three 4.00000000 1.03189865 3.88 0.0082
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Five points must be stressed here. First, the regression approach has produced an incorrect 
estimate of the mean difference, an incorrect sum of squares for the contrast, and an incorrect 
F value, and thus an incorrect test of the desired contrast. The problem is that the simple 
method of coding that works fine when sample sizes are equal does not test the contrast it 
might appear intuitively to test when sample sizes are unequal. Instead, the X1 variable can be 
shown to be testing an entirely different hypothesis. In particular, by simplifying the general 
expression for a slope in simple regression, it can be shown that the coefficient for X1 will be 
given by

1 1 2 2
1 2 2 2

1 1 2 2 1 2 3 4 1 2

( ) ( )ˆ
(1 (( ) )) (1 (( ) )) ( )(( ) )

n Y Y n Y Y
n n n N n n n N n n n n N

β
− − −

=
− − + + − + + −

. 

Substituting n1 = 4, n2 = n3 = n4 = 2, Y1  = 12, and Y2  = 14 into this expression for 1̂β  yields a 
value of −1.57, just as we obtained in our regression analysis. In this sense, regressing Y on X1 
by itself produces the right answer to the wrong question. Although it may not be obvious, with 
equal sample sizes, the expression for 1̂β  given earlier simplifies greatly to become equal to 
( ) /Y Y1 2 2− , which then yields the desired result. So this simple approach works fine with equal 
n, but it does not truly test the difference between Groups 1 and 2 with unequal n. Second, it 
would be a mistake to infer that there is some inherent problem here with regression. Instead, the 
problem arises from a mistaken belief that the simple method of coding will test the hypothesis of 
interest. As we have already pointed out, there is not necessarily a direct relationship between the 
values of a coded variable and the coefficients of a contrast being tested by that variable. Third, 
regression can be used to test the correct hypothesis, but this necessitates a fundamentally dif-
ferent approach from simply regressing Y on X1. The most important point is that in general it is 
necessary to regress Y on an entire set of a − 1 predictors (plus the unit variable) in order to obtain 
the correct test of the desired contrast, even though this may be the only contrast of interest. In 
fact, for pairwise comparisons, we can always rely on the reference cell model, where we simply 
define the reference cell to be one of the two groups to be compared. Or more generally, we can 
use the method presented earlier in the tutorial for complex contrasts. Yet other possible options 
are described in such sources as Cohen et al. (2002), Darlington and Hayes (2017), Pedhazur 
(1997), and Serlin and Levin (1985).

contrasts via linear combinations of regression coefficients

We have just seen that creating appropriate X variables to test contrasts of interest through 
regression is often tedious at best and can produce erroneous results at worst. In fact, in our 
judgment, this is one of the main limitations of adopting a regression approach for teaching and 
learning analysis of variance. However, there is yet another approach that avoids these prob-
lems. Instead of attempting to identify appropriate coding methods, this alternative approach 
relies on forming linear combinations of the parameters of the model. Although this approach 
may be slightly less intuitive than directly coding contrast variables, it has the advantage of 
being much more general in that it produces correct values even when sample sizes are unequal 
and/or contrasts are nonorthogonal. Because of its generality, this approach has been imple-
mented in the general linear model procedure of many popular statistical packages, such as SAS 
and SPSS.

Most packages that include the capability of forming linear combinations of the parameters 
are based on the reference cell model, so that is the approach we will illustrate here. The key to 
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understanding how this approach works is to recall the relationship between population means 
and regression parameters. Recall that this relationship can be written as

 β0 = μa for Group a, 
 βj = μj − μa for each Group j. 

Notice that the regression parameter βa for the final group is necessarily zero, so it need not 
(indeed, cannot) be estimated from the data. Now consider how this approach goes about testing 
a pairwise contrast of the difference between the first two means. What needs to be done here 
is to express μ1 and μ2 in terms of the betas—i.e., the regression parameters. Notice that we can 
accomplish this goal by substituting β0 for μa in the bottom equation and then placing μj on the 
left side of the equation, yielding

μj = β0 + βj for each group j.

We can now rewrite our contrast μ1 minus μ2 in terms of the betas as

μ1 − μ2 = (β0 + β1) − (β0 + β2).

The β0 term obviously drops out of this expression, which can then be written more simply as

μ1 − μ2 = β1 - β2.

What have we accomplished with all of this? We have learned that we can test our pairwise 
contrast by using the regression model to test whether β1 and β2 are equal to one another. 
We can also form a confidence interval for the mean difference μ1 − μ2 by forming a 
confidence interval for β1 − β2. The same logic applies to any other contrast, pairwise or 
complex.

This approach has a very important advantage over the direct coding method—namely, that it 
is completely general. It provides correct answers with equal or unequal sample sizes, pairwise 
or complex contrasts, and with orthogonal or nonorthogonal sets of contrasts. In theory, the only 
disadvantage is that it necessitates finding the relationship between the ANOVA parameters μj 
and the regression parameters βj. In practice, however, this work is often done by the statistical 
package behind the scenes. For example, the general linear model procedures in SAS and SPSS 
allow you to specify your hypothesis of interest in terms of ANOVA parameters. The computer 
program then translates the hypothesis into the regression formulation and performs the appropri-
ate analysis.

The only serious disadvantage of this approach is that it requires specifying the standard error 
of the linear combination of regression parameters. The bad news is that the general form of this 
specification involves matrix algebra. The good news is that SAS, SPSS, and other packages 
perform these calculations for you, so computational burden need not be an issue.

Numerical Example
We have already used a numerical example to illustrate complications that can emerge in attempt-
ing to use direct coding of predictor variables to test contrasts. Thus, in this section, we will 
briefly illustrate how testing linear combinations of parameters in the reference cell model cir-
cumvents these difficulties.
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We will return to the augmented data set we introduced earlier in this tutorial. Table T3.6 
shows an excerpt of the output from PROC GLM in SAS. The top portion of Table T3.6 shows 
parameter estimates and corresponding information from the reference cell model (as of this 
writing, this output is obtained from PROC GLM by specifying SOLUTION as a desired option). 
Several points are especially noteworthy. First, the intercept β0 is estimated to be 18, because as 
we discussed, the intercept in the reference cell model represents the mean of the final group, 
and the sample mean for the fourth group here is in fact 18 (i.e., Y4  = 18). Second, notice that β1 
is estimated to be −6, which is simply the difference between the sample mean of the first group 
(Y1 12= ) and the sample mean of the fourth group. Third, the estimates for β2 and β3 follow the 
same logic. Fourth, the estimate for β4 is zero, because that is the constraint imposed by the ref-
erence cell model. Fifth, each estimate is accompanied by its standard error, t-statistic, p value, 
and confidence interval. Sixth, the program includes a warning that serves as a reminder that the 
estimates obtained here reflect a specific choice of constraints we have placed on the parameters.

The next portion of Table T3.6 shows the result of including a CONTRAST statement in 
the command syntax. Specifically, this output results from requesting a contrast of the first two 
groups. As you may recall, we previously calculated the sum of squares for this contrast using 
Equation 4.11 and obtained a value of 5.33, in agreement with the value shown in the table. We 
also found that the observed F value for this contrast is 3.20, once again agreeing with the value 
shown in the table. While this may not seem like a big deal, keep in mind that obtaining these val-
ues with direct coding necessitated tedious creation of a − 1 coded predictor variables. As we have 
stated, however, forming linear combinations of regression coefficients allows SAS PROC GLM 
and similar programs to duplicate the results we presented in Chapter 4 and elsewhere in the book.

The final portion of Table T3.6 shows the result of including an ESTIMATE statement in 
the command syntax, once again for comparing the first two groups. The information provided 
by ESTIMATE largely duplicates information obtained from CONTRAST. However, ESTI-
MATE offers an advantage in that it expresses results in terms of a confidence interval unlike 
CONTRAST.

Two-way Between-subjects Factorial Designs

As in single-factor designs, models for factorial designs can be expressed in terms of either 
ANOVA or regression, and in terms of effects, cell means, or a reference cell. While the logic we 
have developed for the single-factor design extends to factorial designs, the issues become more 
complicated. Thorough consideration of these complications is beyond the scope of this book.

Instead of attempting to present a variety of models for the two-way design and discussing 
their interrelationships, we have chosen to focus on a demonstration of the reference cell model 
in this design. We have chosen this model because as we have already mentioned, it often under-
lies linear models procedures in current statistical software packages. Our presentation here is 
intentionally less detailed in the single-factor design and is intended simply to give readers a 
general sense for how concepts we developed in the single-factor design can be extended to the 
factorial design.

We will focus our attention on how the reference cell model can be written as a regression 
model in order to analyze the data shown in Table 7.9 of the body of the text. As a reminder, the 
data in this table represented scores for 36 individuals who had received various combinations of 
biofeedback and drug therapy for treatment of hypertension. The resultant design was 2 × 3, with 
two levels of biofeedback (present or absent) and three types of drugs. For convenience, the cell 
means and marginal means for these data are reproduced here as Table T3.7.

The regression approach based on a reference cell model requires appropriate coding of pre-
dictor variables. While any specific cell could serve as the reference cell, we will illustrate the 
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typical default of allowing the final cell in the design to serve as the reference cell. In this 2 × 3 
design, this “final” cell will be the cell in row 2 and column 3. Thus, we will need predictors to 
distinguish other rows and columns from row 2 and column 3. In theory, there are many different 
ways we could parameterize such a model, and if we are clever enough we could figure out how 
to form linear combinations of these parameters to test whatever types of effects we decide to 
test, but we will proceed to illustrate how predictors are typically coded so as to set the stage to 
test effects of interest in factorial designs, such as main effects, interactions, and simple effects.

At the outset we need to remember that the reference cell model includes an intercept term 
equal to one for every individual. As usual we will represent this predictor variable as X0, which 
reminds us that this term is already included in the regression model by default, so we need not 
actively create this variable ourselves. Before attempting to define additional predictor variables, 
it may be helpful to anticipate how many predictors we will need to include in our full model. 
The full model should include a parameter for each population mean, so in a 2 × 3 design, we 
should have a total of six parameters. The intercept counts as one of these parameters, so in our 

Contrast DF Contrast SS Mean Square F Value Pr> F

mul vs. mu2 1 5.33333333 5.33333333 3.20 0.1238

Parameter Estimate
Standard 

Error t Value Pr> |t|
95% 

Confidence Interval
mul vs. mu2 −2.00000000 1.11803399 −1.79 0.1238 −4.73573062 0.73573062

TaBlE T3.7  
cEll MEaNs aND MarGiNal MEaNs For 2 × 3 DEsiGN

B(Drug)
1(X) 2(Y) 3(Z) Marginal Means

A(Biofeedback) 1 (Present) 168 204 189 187
2 (Absent) 188 200 209 199

Marginal Means 178 202 199 193

TaBlE T3.6  
ouTPuT FroM sas Proc GlM For auGMENTED DaTa sET

The GLM Procedure

Dependent Variable: Y

Parameter Estimate
Standard

Error t Value Pr > |t|
95%

Confidence Interval

Intercept 18.00000000 B 0.91287093 19.72 <.0001 15.76628530 20.23371470
Group 1 −6.00000000 B 1.11803399 −5.37 .0017 −8.73573062 −3.26426938
Group 2 −4.00000000 B 1.29099445 −3.10 .0212 −7.15894962 −0.84105038
Group 3 −2.00000000 B 1.29099445 −1.55 .1723 −5.15894962 1.15894962
Group 4  0.00000000 B

Note.  The X’X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. 
Terms whose estimates are followed by the letter ‘B’ are not uniquely estimable.
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case, we should define five additional X variables. The general form of the regression model here 
can thus be written as

Yi = β0 + β1X1i+ β2X2i + β3X3i + β4X4i + β5X5i + εi,

where X1 through X5 are coded so as to represent differences among the groups. With two rows 
and three columns, one of these variables will typically reflect a type of row difference, two will 
reflect a type of column difference, and the remaining two will reflect the interaction.

We can now proceed to define a predictor that will represent a type of row effect (we will see 
shortly exactly what type of row effect this variable represents). Specifically, we can define X1 
as follows:

X i1 0
1= otherwise

if the individual belongs to row 1 (i.e., biiofeedback present){ . 

Similar logic applies for the columns, except that with three columns, we need to create two 
predictors to represent column differences. A typical choice would be

X i2 = 0 otherwise
1 if the individual belongs to column 1 (i.e.,, drug X){  

and

X i3 0
1= otherwise

if the individual belongs to column 2 (i.e.,, drug Y){ . 

The final two predictors then represent the interaction. Each interaction predictor is the product 
of a row predictor with a column predictor. Because there is one row predictor and there are two 
column predictors, there will be two interaction predictors. Notice that in general there will be 
a − 1 row variables and b − 1 predictor variables. Thus (a − 1) (b − 1) interaction variables will 
result from multiplying each row variable by each column variable, just as we would expect, 
because (a − 1) (b − 1) is the numerator degrees of freedom for the interaction effect in the two-
way design. In our specific 2 × 3 design, the predictors are defined as follows:

X i4
0

1
=

otherwise

if the individual belongs to row 1 and colummn 1 (i.e., the
combination of biofeedback present and drugg X)






, 

and

X i5
0

1
=

otherwise

if the individual belongs to row 1 and colummn 2 (i.e., the
combination of biofeedback present and drugg Y)






. 

Table T3.8 shows the result of regressing Y on these five X variables for these 36 individuals, as 
obtained from PROC REG in SAS. In particular, the table shows each parameter estimate, as well 
as corresponding standard errors, t values, and p values. As we will see in more detail shortly, we 
have to be very careful not to misinterpret these parameter estimates. For example, it would be 
tempting to assume that X1 represents the row main effect, in which case we might infer that the 
p value for the row main effect in these data is .0059. In reality, however, X1 does not represent 
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the main effect of the row factor, but instead the simple effect of row within the third column. We 
can understand this by returning to our coding scheme. Notice that individuals in the row 2, col-
umn 3 cell (i.e., the combination of biofeedback absent and drug Z) have been assigned a score 
of 0 on all five X variables. Thus the regression model for scores in this specific cell simplifies to

Yi = β0 + εi.

Similarly, individuals in row 1, column 3 (i.e., the combination of biofeedback present and drug 
Z) have been assigned a score of 0 on all variables except for X1, where they have received a 
score of 1. Thus the regression model for scores in this specific cell simplifies to

Yi = β0 + β1 + εi.

Comparing these two equations shows us that β1 represents the difference between scores in these 
two cells. We can now see that the difference between these two cells is simply the simple effect 
of row in the third column. Indeed, the parameter estimate of −20 shown in Table T3.8 equals the 
difference between the sample means of these cells shown in Table T3.7. Namely, the value of 
−20 equals 189 minus 209, as it must. Thus, although we coded X1 so that all individuals in row 1 
received a score of 1 and all individuals in row 2 received a score of 0, β1 does not represent the 
row main effect. Instead, β1 represents the simple effect of row in the third column. One way of 
understanding this is to realize that the five X variables we have created are correlated, even with 
equal n. Thus, β1 reflects the relationship between Y and X1 when the remaining predictor vari-
ables are “held constant.” What it means to hold the remaining predictors constant here turns out 
to correspond to the simple effects test. The other regression coefficients also must be interpreted 
in this light. Although this is no problem whatsoever mathematically, it does show once again 
that intuitive interpretations of regression parameters may be incorrect.

We can immediately see that the parameters in the regression model do not necessarily have 
the meaning we might naively assume them to have. As a consequence, interpreting the output 
shown in Table T3.8 is not as straightforward as one might hope. While we could proceed to 
explain the proper interpretation of each parameter estimate, we will instead take a different 
approach. Although we could use PROC REG or a similar regression procedure to calculate 
estimates such as those shown in Table T3.8 and then test hypotheses of interest by forming 
appropriate linear combinations, the availability of GLM procedures in SAS, SPSS, and other 
packages provides a simpler alternative. At this moment, we can well imagine that you may be 
asking why we have bothered to introduce the confusion surrounding estimates from regression 

TaBlE T3.8 
rEGrEssioN aNalYsis oF DaTa FroM 2 × 3 FacTorial DEsiGN

Parameter Estimates

Variable DF Parameter Estimate Standard Error t Value Pr>|t|

Intercept 1 209.00000 4.77144 43.80 <.0001
X1 1 −20.00000 6.74784 −2.96 0.0059
X2 1 −21.00000 6.74784 −3.11 0.0041
X3 1 −9.00000 6.74784 −1.33 0.1923
X4 1 0 9.54289 0.00 1.0000
X5 1 24.00000 9.54289 2.51 0.0175
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if we are really going to use GLM all along. However, keep in mind that the purpose of this 
section is to explain the relationship between regression and ANOVA models. Even though the 
practical import of our discussion may be to convince you always to use GLM and to avoid the 
complications of interpreting REG, nevertheless it is useful to understand how they are related to 
one another. Of course, we do not mean to imply that GLM avoids all potential problems of mis-
interpretation among uninformed researchers. For example, GLM does not automatically center 
continuous variables, so when continuous and categorical variables are allowed to interact with 
one another, what appears to be a main effect may in actuality be a simple effect of the categorical 
variable conditional on a value of 0 for the continuous variable (see West, Aiken, & Krull, 1996, 
for more on this topic).

Our plan at this point is to reconsider this factorial design from the perspective of GLM. We 
will illustrate a few tests one might perform using GLM and then consider how to duplicate these 
tests using REG. We want to stress that from a purely practical perspective, we could simply use 
GLM and stop. There is no need to use REG here at all. However, because a major purpose of 
this tutorial is to show the relationship between ANOVA and regression, we will perform a few 
selected tests both ways.

In particular, we will use both GLM and REG to perform three tests: (1) the row main effect, 
(2) the simple row effect within the first column, and (3) the interaction contrast within the first 
two columns. We have chosen these three tests simply because they provide a variety of types of 
effects one might wish to test. We do not mean to imply in any fashion that they are necessarily 
the tests that we would really perform on these data; a description of how we might choose a 
meaningful set of tests was presented in Chapter 7 when we originally presented these data. Also 
we should be clear that although all of the effects we have chosen to test here are single degree of 
freedom effects, the same logic applies to multiple degree of freedom tests.

We will begin by considering how to test these three effects in GLM. We can use ESTIMATE 
and/or CONTRAST to perform these tests. We have chosen to illustrate ESTIMATE because it 
also provides an estimate of the contrast, which we can then compare to the table of cell means 
shown in Table T3.7. To provide the proper commands to GLM, we must return to the ANOVA 
formulation of the model. In the case of a two-way between-subjects design, we can write the 
model as

 Yijk = μ + αj + βk + (αβ)jk + εijk. (7.6, repeated)

To use ESTIMATE or CONTRAST, we need to write the corresponding model for each specific 
cell mean of the design. In the case of a 2 × 3 design, this yields six equations, one for each cell 
mean:

 μ11 = μ + α1 + β1 + (αβ)11,
 μ12 = μ + α1 + β2 + (αβ)12,
 μ13 = μ + α1 + β3 + (αβ)13,
 μ21 = μ + α2 + β1 + (αβ)21,
 μ22 = μ + α2 + β2 + (αβ)22,
 μ23 = μ + α2 + β3 + (αβ)23.

The next step is to express the effect of interest in terms of the population cell means. For exam-
ple, the row main effect compares the average of the three cells in the first row to the average of 
the three cells in the second row:



54 TuTorial 3

Material to accompany Designing Experiments and Analyzing Data: A Model Comparison Perspective,  
Third Edition by Scott E. Maxwell, Harold D. Delaney, and Ken Kelley (2018)

1
3

1
311 12 13 21 22 23( ) ( )µ µ µ µ µ µ+ + − + + . 

We now must re-express this linear combination in terms of the ANOVA effect parameters. Sub-
stituting from the six previous equations and simplifying yields

α α αβ αβ αβ αβ αβ αβ1 2 11 12 13 21 22 2
1
3

1
3

1
3

1
3

1
3

1
3− + + + − − −( ) ( ) ( ) ( ) ( ) ( ) 33 . 

The final step of the process is to write the appropriate syntax to tell the computer program to 
estimate this linear combination. As of this writing, the appropriate syntax to estimate this effect 
in PROC GLM of SAS would have the following general form, where instead of writing coef-
ficients as fractions, integer values are given along with the “divisor” that is to be used as the 
denominator of all coefficients:

estimate ‘rowl vs. row2’ row 3 − 3 row*column 1 1 1 −1 −1 −1 / divisor = 3.

In certain cases such as this one, users are allowed to omit the interaction effects, because SAS 
will automatically include them when the user has not done so him or herself; that is, the follow-
ing syntax would here produce the same result:

estimate ‘rowl vs. row2’ row 1–1.

Instead of belaboring the point by deriving similar expressions for the other two effects of interest, 
the top portion of Table T3.9 shows the end results of writing these questions in terms of ANOVA 
model parameters. The middle of Table T3.9 shows the equivalent SAS syntax. The bottom of 
Table T3.9 shows output from PROC GLM for estimating these three contrasts in our data.

Two goals yet remain. First, we will briefly verify that the results shown in Table T3.9 are 
correct. Second, we still need to return to our regression model so we can see how to duplicate 
these results using regression.

We can easily verify that the results shown in Table T3.9 are correct. First, consider the row 
main effect. Notice that the estimated value of the contrast is −12. Returning to Table T3.7 shows 
that the difference between the row marginal means is indeed −12, because the marginal mean 
for the first row is 187 and the marginal mean for the second row is 199. In addition, squaring 
the t value of −3.08 shown in Table T3.9 yields a value of 9.49, which is the F value reported for 
the row main effect in Chapter 7. Second, consider the simple row effect within the first column. 
The estimated value of the contrast, −20, equals the difference between 168 and 188 from Table 
T3.7. Once again, squaring the t value of −2.96 shown in Table T3.9 yields a value of 8.76, which 
is the same (except for rounding error) as the F value reported for the simple effect in Chapter 7. 
Finally, consider the interaction contrast within the first two columns. The estimated value of 
the contrast, −24, equals (168 + 200) minus (188 + 204) from Table T3.7. As it must, squaring 
the t value of −2.51 shown in Table T3.9 yields a value of 6.30, which once again agrees (within 
rounding error) with the F value reported for this interaction contrast in Chapter 7 (see page 346).

Our final challenge is to see how these tests we have just performed using PROC GLM can 
be duplicated in PROC REG. How did PROC GLM test our contrasts, and how does this relate 
to PROC REG? Unbeknownst to the user, PROC GLM has created the reference cell model we 
used to perform our regression analysis. Specifying the SOLUTION option in GLM produces 
the same estimates, standard errors, t values, and ρ values shown in Table T3.8 for the analysis 
we conducted using PROC REG. However, PROC GLM has an extremely useful advantage over
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TaBlE T3.9  
EsTiMaTEs usiNG Proc GlM

Effects in Terms of Model Parameters

(1)  Row main effect
α1 − α2 + 1/3(αβ)1 + 1/3(αβ)12 + 1/3(αβ)13 − 1/3(αβ)21 − 1/3(αβ)22 − 1/3(αβ)23

(2)  Simple effect of row within first column
α1 − α2 + (αβ)11 − (αβ)21

(3)  Interaction contrast within first two columns
(αβ)11 − (αβ)12 − (αβ)21 + (αβ)22

Corresponding SAS PROC GLM Syntax
(1)  Row main effect
estimate ‘rowl vs. row2’ row 3 −3 row*column 1 1 1 −1 −1 −1/ divisor=3
(2)  Simple effect of row within first column
estimate ‘mu11 vs. mu21’ row 1 –1 row*column 1 0 0 –1 0 0
(3)  Interaction contrast within first two columns
estimate interaction contrast’ row*columns 1 –1 0 –1 1 0
SAS Output for Data in Table T3.7

Parameter Estimate
Standard 

Error t Value Pr>|t|
95% 

Confidence Interval
rowl vs. row2 −12.0000000 3.89586676 −3.08 0.0044 −19.9564214 −4.0435786
mull vs. mu21 −20.0000000 6.74783916 −2.96 0.0059 −33.7809261 −6.2190739
interaction 
contrast 

−24.0000000 9.54288566 −2.51 0.0175 −43.4891725 −4.5108275

PROC REG from the user’s perspective. PROC GLM, unlike PROC REG, allows the user to 
specify questions of interest in terms of the ANOVA model parameters. However, PROC REG is 
unaware of any concept of ANOVA model parameters, and requires the user to specify all ques-
tions of interest in terms of X1 through X5, the predictors we created as indicator codes. In reality, 
PROC GLM has created these same five predictors, but it does much of the work for the user by 
translating between the ANOVA effects and the regression parameters.

To understand how PROC GLM does this translation, we will once again consider the same 
three contrasts we estimated using GLM. However, now we will see how we can estimate and 
test these contrasts directly using PROC REG. The key here is to realize the relationship between 
the regression parameters and the ANOVA parameters. At the outset, it is crucial to consider the 
constraints we have placed on parameters by adopting the reference cell approach. For example, 
consider α1 and α2, the effect parameters for the first and second row, respectively. It seems 
most natural to think of these parameters in terms of the ANOVA effects model, in which case 
we impose the constraint that α1 and α2 must sum to zero. However, we must remember that the 
constraint in the reference cell model is different. Recall that in our discussion of reference cell 
coding in the one-way model, we saw that the effect for the final group is set equal to zero. Simi-
larly, in the two-way model, instead of constraining α1 and α2 to sum to zero, the reference cell 
model sets α2 equal to zero. More generally, instead of imposing any constraints about sums, the 
reference cell model simply sets an appropriate number of parameters equal to zero.

The top portion of Table T3.10 shows the resulting correspondence between ANOVA 
parameters and regression parameters using reference cell coding for our 2 × 3 design. We 
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TaBlE T3.10  
rEGrEssioN MoDEl ParaMETErs aND corrEsPoNDiNG rEGrEssioN aNalYsis oF 

TaBlE T3.4 DaTa

Relationship of ANOVA and Regression Parameters

ANOVA Regression

μ β0
α1 β1
α2 0
β1 β2
β2 β3
β3 0

(αβ)11 β4
(αβ)12 β5
(αβ)13 0
(αβ)21 0
(αβ)22 0
(αβ)23 0

Re-expression of contrasts in terms of regression parameters

(1)  Row main effect
ANOVA: α1 − α2 + 1/3(αβ)11 + 1/3(αβ)12 + 1/3(αβ)13 − 1/3(αβ)21 − 1/3(αβ)22 − 1/3(αβ)23
Regression : β1 + 1/3β4 + 1/3β5
(2)  Simple effect of row within first column
ANOVA : α1 − α2 + (αβ)11 − (αβ)21
Regression : β1 + β4
(3)  Interaction contrast within first two columns
ANOVA : (αβ)11 − (αβ)12 − (αβ)21 + (αβ)22
Regression : β4 – β5

must remember that the meaning of the specific ANOVA parameters is contingent on the con-
straints we have imposed. For example, the meaning (and therefore the value) of α1 in the 
reference cell model will generally be different from the meaning and the value of α1 in the 
effects model, even though the same symbol appears in both models. Before abandoning all 
hope, however, there are certain types of effects whose meaning and value do not depend on 
our choice of constraint. These effects are called estimable functions and include such effects 
as main effects, interactions, marginal mean comparisons, simple effects, interaction contrasts, 
and cell mean comparisons. All three contrasts we estimated using GLM are examples of esti-
mable functions. Further discussion of estimable functions is beyond the scope of our presenta-
tion (for further details, see Green, Marquis, Hershberger, Thompson, and McCollam (1999) 
or Littell, Freund, & Spector, 1991), so we will simply see how we can use the correspondence 
shown in the top portion of Table T3.10 to estimate and test the three contrasts in which we 
are interested.

To use our regression model to estimate and test contrasts of interest, we must write each 
contrast in terms of the parameters of the model (i.e., in terms of β1 through β5). This proves to 
be straightforward once we have written the contrast in terms of ANOVA model parameters, as 
in Table T3.9. For example, consider the row main effect. We saw that this effect can be written 
in terms of ANOVA model parameters as

α α αβ αβ αβ αβ αβ αβ1 2 11 12 13 21 22 2
1
3

1
3

1
3

1
3

1
3

1
3− + + + − − −( ) ( ) ( ) ( ) ( ) ( ) 33. 
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Output from PROC REG

(1) Row main effect
Source DF Mean Square F Value Pr > F
Numerator  1 1,296.00000 9. 49 0.0044
Denominator 30 136.60000

(2) Simple effect of row 
within first column

Source DF Mean Square F Value Pr > F
Numerator  1 1,200.00000 8.78 0.0059
Denominator 30 136.60000

(3) Interaction contrast 
within first two 
columns

Source DF Mean Square F Value Pr > F
Numerator  1 864.00000 6.33 0.0175
Denominator 30 136.60000

All that remains now is to rewrite this linear combination in terms of the regression model param-
eters. The top portion of Table T3.10 allows us to make a simple substitution, yielding

β β β1 4 50 0 0 0 01
3

1
3− + + + − − − , 

which can obviously be written more simply as

β β β1 4 5
1
3

1
3+ + . 

What this tells us is that we can use our regression model to estimate and test the row main effect 
by estimating and testing this admittedly rather strange looking linear combination of regression 
parameters. The middle of Table T3.10 shows the corresponding expressions for the row simple 
effect in the first column and for the interaction contrast in the first two columns. The bottom 
of Table T3.10 shows the result of testing each of these three linear combinations of regression 
parameters using the TEST option of PROC REG in SAS. That the regression results are in fact 
equivalent to the results shown earlier in Table T3.9 using GLM can be seen most easily by com-
paring the three p-values of the two approaches. Of course, the squared t values shown in Table 
T3.9 are also equal (within rounding error) to the F values shown in Table T3.10.

The equivalence of results in Tables T3.9 and T3.10 illustrates how it is possible to use 
regression models with reference cell coding to duplicate results obtained from ANOVA models 
in two-way factorial designs. Similar logic extends this relationship to more complex designs.

THE rElaTioN oF aNova aND rEGrEssioN To oTHEr 
sTaTisTical MoDEls

The fact that regression can (1) literally duplicate the ANOVA effects model, (2) literally dupli-
cate the ANOVA cell means model, and (3) also include continuous predictor variables makes it 
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an extremely flexible and valuable statistical method. Indeed, if these ANOVA models are special 
cases of the regression model, it seems reasonable to ask why the majority of this book formu-
lates models in terms of ANOVA parameters instead of regression parameters. We will answer 
this question in two ways: (1) by considering where ANOVA and regression fit into a broader 
structure of statistical methods and (2) by introducing some examples where we believe that the 
ANOVA formulation has important advantages.

Researchers who understand the relationship between ANOVA and regression can benefit 
by formulating models that best address their scientific questions instead of forcing their ques-
tions to fit a model that may not really be appropriate. Thus we wholeheartedly endorse books 
that emphasize the relationship between ANOVA and regression throughout their presentation. 
Nevertheless, we have chosen not to follow this route and believe that the reader deserves some 
explanation for our choice to emphasize ANOVA models.

From one perspective, our choice can be understood in terms of levels of generality. For exam-
ple, we believe that a major strength of the model comparison approach we employ throughout 
the book is that the concept of comparing a full model to a restricted model plays a central role 
in many other types of statistical models. However, a case could be made that our approach is 
narrow because it focuses so heavily on ANOVA models. Why not present data analysis from a 
broader perspective, such as regression analysis?

Although there are some advantages associated with presenting material in its most general 
form, there are frequently associated disadvantages. For example, one issue that must be con-
fronted is how general one should be. Although the regression model provides considerable 
flexibility, it is hardly the most general statistical model one might contemplate. Instead, the 
regression model can itself be regarded as a special case of a number of other models.

Figure T3.l provides a graphical depiction of the relationships among some common statisti-
cal models. Models nearer the top of the figure are more general than models nearer the bottom. 
Specifically, when two models are connected with a line, the model at the bottom is a special 
case of the model at the top. Thus, for example, ANOVA is depicted as a special case of MRA, 
multiple regression analysis. Multiple regression models are more general than ANOVA models 
in that they can include not only categorical (i.e., nominal, or “class”) predictor variables but also 
continuous predictors. Similarly, ANOVA is a special case of MANOVA, because ANOVA mod-
els allow only a single dependent variable, while MANOVA allows one or more dependent vari-
ables. Chapters 13 and 14 illustrate one use of MANOVA as a method for analyzing data from 
repeated measures designs. Notice that multiple regression analysis and MANOVA are shown 
on the same level of the figure, and neither is directly connected to the other. These two models 
are shown this way because neither is a special case of the other. MANOVA is not a special case 
of regression because regression (with the exception of multivariate multiple regression) allows 
only one dependent variable. However, regression is also not a special case of MANOVA because 
MANOVA allows only categorical predictors.

Both regression and MANOVA can be thought of as special cases of the general linear model 
(GLM), which is sometimes called the multivariate general linear model. This model extends 
MANOVA by allowing continuous as well as categorical predictors. In this sense it is like regres-
sion. However, the GLM is more general than regression in that it allows multiple dependent 
variables. Yet one other distinction is sometimes made between GLM and regression. For exam-
ple, Darlington and Hayes (2017) describe the ability to create a set of indicator variables auto-
matically with a single command as a fundamental difference between GLM computer programs 
and regression computer programs.

The GLM can itself be extended in any of several ways. For example, the generalized linear 
model (GLIM) extends the GLM by allowing the dependent variable to take on a distributional 
form other than normality. This flexibility makes GLIM especially useful for modeling data such 
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as proportions and counts. The general linear mixed model (GLMM) provides yet another exam-
ple of an extension to the general linear model. The GLMM, which we refer to as the mixed-
effects model in Chapters 15 and 16, expands the general linear model by allowing predictors to 
be random as well as fixed. Chapters 15 and 16 provide an introduction to some examples of this 
type of model. The final model shown in the figure is the structural equation model (SEM), also 
known as the LISREL model, which is the name of the computer package that helped popular-
ize these methods. SEMs expand on the GLM in two ways. First, SEMs allow relationships to 
be examined for latent as well as manifest variables. Latent variables, as the name implies, are 
variables that are not directly observed; instead, manifest variables are included in the model as 
imperfect manifestations of presumed underlying latent variables. Even without directly mea-
suring latent variables, it is possible to study their relationships under certain conditions and 
assumptions. In this respect, latent variables are much like factors in traditional factor analysis. 
Second, SEMs also allow a variable to serve as both an independent variable and a dependent 
variable. For example, a child’s eagerness to learn might be dependent (at least in part) on certain 
parental characteristics, while at the same time the child’s eagerness to learn has some influence 
on the child’s academic progress. This set of relationships could not be directly examined in the 
GLM, because eagerness would need to be either an X variable or a Y variable in the model. 
However, structural equation modeling allows eagerness to serve as an X variable in one equation 
and as a Y variable in another equation. 

FiGurE T3.1 The relation of ANOVA and regression to other statistical models

aNova “vErsus” rEGrEssioN MoDEls

Some individuals have suggested that ANOVA should always be conceptualized in terms of 
regression because ANOVA is simply a special case of regression. However, if the fact that 
ANOVA is a special case of regression is reason enough by itself to suggest that ANOVA should 
always be thought of in terms of regression, it would seem to follow logically that we should not 
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stop at the level of regression. As Figure T3.1 shows, regression is itself simply a special case of 
yet other methods. Thus this logic would seem to imply that both ANOVA and regression should 
always be thought of in terms of the GLM, or perhaps in yet higher terms such as structural equa-
tion modeling.

Our goal in this book is to present concepts in such a way that they are generally applicable. 
For example, our basic philosophy of comparing models is applicable throughout the hierarchy 
shown in Figure T3.1 Even though specific test statistics may take on different forms, the ideas 
remain much the same. Nevertheless, we have chosen to present these ideas primarily in the 
context of ANOVA models. We made this choice for several related reasons. First, the analysis of 
data from certain types of designs is much more natural in the ANOVA framework. For example, 
Chapters 10, 11, and 12 (along with Chapters 15 and 16) show that designs with random effects 
usually require consideration of multiple error terms, which does not fit easily in the regression 
framework. Similarly, the multivariate approach to repeated measures presented in Chapters 13 
and 14 cannot be accommodated in (univariate) multiple regression. Even in purely between-
subjects designs with only fixed effects, we would suggest that more attention needs to be paid 
to assumptions underlying pooled error terms, especially when forming confidence intervals or 
testing hypotheses for contrasts. Consideration of separate error terms is much clearer from the 
perspective of ANOVA instead of regression. Second, from a purely practical perspective it is 
much easier to test differences in group means using GLM procedures in statistical packages 
than using regression procedures. As Darlington and Hayes (2017) point out, a distinguishing 
characteristic of GLM procedures is that they allow the user to specify questions of interest in 
terms of ANOVA effect parameters. Thus researchers will almost certainly rely on an ANOVA 
conceptualization in using statistical packages to analyze their data. While in theory regression 
could be used to obtain the same results, we have seen that exclusive reliance on regression can 
become confusing and tedious even in rather simple designs. Third, ANOVA models provide the 
most natural and convenient way of thinking about group differences. If your questions are about 
means, it seems sensible that the parameters of your model should themselves be means, or per-
haps differences in means. While parameters of other models such as regression models may also 
be means or mean differences, the precise meaning of such parameters is often much less clear 
than in ANOVA models. Fourth, in a similar vein, ANOVA models directly reflect the fact that an 
investigator’s questions pertain to multiple populations. Regression models, on the other hand, 
do not necessarily reflect multiple populations. Instead, they reflect the relationship between a 
dependent variable and one or more independent variables in a single population. Of course, we 
can code indicator variables so as to represent different populations, but even here the method 
itself addresses the extent to which these indicator variables are related to the dependent variable. 
Nowhere in the model itself is there a direct expression that multiple populations exist. Fifth, 
although we believe that ANOVA formulations offer significant advantages, nevertheless it is 
crucial that researchers not force all of their questions into an ANOVA framework. For example, 
as numerous authors including ourselves (e.g., Cohen, 1983; Maxwell & Delaney, 1993; Vargha, 
Rudas, Delaney, & Maxwell, 1996) have shown, artificially categorizing a continuous variable 
can badly distort the true nature of relationships between variables. Contrary to conventional 
wisdom, results based on artificial dichotomies are not necessarily conservative. Instead, catego-
rizing continuous variables can sometimes create spurious findings and inflate Type I error rates 
dramatically, so researchers cannot rely on an excuse that they simply opted for a more conser-
vative way of analyzing their data when they categorized a continuous variable. Thus with rare 
exceptions continuous variables should be modeled in their continuous forms, necessitating an 
extension beyond ANOVA to ANCOVA or the GLM. However, even here we would suggest that 
any categorical predictors are best understood in terms of ANOVA parameters, not regression 
coefficients. The end result is that researchers need to be flexible and able to formulate models 
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that truly reflect their hypotheses and data structures, instead of always attempting to force every 
analysis into the same model or computerized procedure. Sixth, in summary we agree with the 
view espoused by Mallows and Tukey (1982) that ANOVA should not be regarded as “simply” 
a special case of regression. They stated, “It is sometimes said that ‘analysis of variance is just a 
form of regression.’ The common occurrence of ANOVAs with several distinct error terms and 
the absence of both theory and technology for regressions involving two or more error terms 
makes the failure of this statement, at least with today’s notion of regression, quite clear.”
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